"The Only Thing That Is Constant Is Change"

- Heraclitus of Ephesus, 520-460 B.C.

Alexander Mertke

23-24 April 2019

Mines

Smelters

Overview

- Work Experience
 - Thermal Spraying
 - General Galvanising
- New challenges for General galvanizers
 - New restrictions
 - New steel compositions
 - ...

Work Experience

- Working with zinc since 2012
- Corrosion engineer at
 - University of Applied Sciences, Iserlohn, Germany
 - Institute for Maintenance and Corrosion Protection Technologies n.f.p.Ltd (IFINKOR), Iserlohn, Germany
- Since March 2018 with Boliden

Thermal Spraying

• Galvanizing of large or otherwise difficult to galvanize steel structures.

General Galvanising

- Research project
 - Influence of different alloying elements on visual surface appearance and corrosion behaviour
- Quality control
- Investigations in the case of damage
 - Corrosion
 - Black spots
 - Deformation of products

- ...

New challenges for General Galvanizers

- New restrictions
 - "Lead-free"

Nordic Galvanizers are more experienced in lead-free galvanizing

- New steel compositions
 - Al-killed steels
 - High Alloyed steels
 - Internal oxidation
 - Effect on wettability and coating growth

Reduction of lead changes the physical properties of the Zn-melt

- Pb, Sn, Bi (and Sb) are acting on:
 - Viscosity
 - Surface tension
 - Wettability

Physical properties of a Zinc Melt

- Viscosity:
 - Low impact of Pb, Sn and Bi
 - Pb-equivalent viscosity = Pb + 2,5 Sn + 2,5 Bi
- Surface tension:
 - Huge impact of Bi
 - Pb-equivalent surface tension = Pb + 0,15 Sn + 6 Bi
- Wettability
 - High impact of Sn
 - Pb-equivalent wettability = Pb + 3 Sn + 2 Bi

Al-killed steels in order to facilitate laser cutting

C	Si	Mn	P	S	Al
(max %)	(min %)				
0.10	0.031)	1.50	0.025	0.010	0.015

- Domex 355MC (SSAB): category A (thin coatings) for hotdip zinc-coating in EN 10149-2.
- Category B: (thick coatings) is available on request (Si 0.15-0.21%).
- AI (>~0.04%) => low coating thickness below ISO 1461
- In collaboration with the Association "nordic GALVANIZERS" investigation of origins

- Results of ongoing investigations
 - Chemistry of steel:

С	Si	Mn	Ρ	S	AI
0.071	0.01	0.590	0.006	0.004	0.051

- Galvanizing test in 2 plants (by nordic GALVANIZERS):

- comparable pre-treatment,

Degreasing	Pickling	Fluxing
10 min	37 min	2 min

- differences in dipping time, Zn melt, material (thickness)

Dipping time	Zn melt	Material (thickness)
2,67 min	Nii Nii fraa	285118 (3 mm)
2,67; 5; 10 min	INI; INI-ITEE	DX 355 (10 mm)

Results of ongoing investigations

Results of ongoing investigations

Front- & backside:

 10 mm: differences in the coating thickness

Coating growth 3 mm / 10 mm:

- no clear difference
- 55 µm possible after 2.67 min dipping time
- 85 µm possible after more than 10 min dipping time

Ni / Ni-free:

 Difference in the coating thickness: 12,9 – 13,7 µm for a dipping time: 2.67 min

Results of ongoing investigations

- > Ni- coatings show low amount of withdrawn Zinc (η -phase)
- Difference in galvanizing process?

Thanks for your attention!

Questions?

www.boliden.com

Alexander.Mertke@boliden.com

