

Expensive zinc losses – a reflection over BREF data

What is BAT and BREF?

- To get common rules and requirements for all plants in the same industry sector around Europe an EU directive is created
- Decide what is the Best Available Technique (BAT) for different processes
- Create a BREF: Best Available Technique Reference Document
- Aim: Knowledge transformation, better performance, less environmental impact

Data collection

The work has started with data collection from a large number of plants around Europe – a questionnaire have been sent out

The data will be used to set requirements for the plants in the future

Key environmental issues for the BREF:

- Energy consumption/efficiency
- Materials consumption (zinc, degreasing, pickling, fluxing…)
- Generation of waste (ash, hard zinc, filter dust...)

Participating companies

 I expected a hard work with the questionnaire, but everybody from NG was very helpful (8 plants) – other NA:s had a worse situation...

M State	BG Submitted	BG Planned
Austria	0	7
Belgium	1 (Lennsens)	10
Bulgaria	0	0
Czech Rep	3 (2xWiegel; AM Ostrava)	0
Germany	4 (?)	17
Denmark	3	2
Spain	7	16
Finland	0	0
France	10	10
Italy	12 (inc 1 tube)	12 (inc 1 tube)
Luxembourg	0	0
Netherlands	0	8
Norway	0	0
Poland	0	2 (tubes)
Portugal	4 (?)	4
Romania	0	0
Sweden	4	5
Slovakia	0	0
UK	10	13
Greece	0	2
TOTAL	58 (inc 1 tube)	108

What can you learn from the data?

To collect the data has been quite interesting (even though the data xl-sheet has been a bit complicated ©)

There is a lot of interesting information to study...

- Relation between degreasing system and consumption of pickling acid...
- Energy consumption in different plants....
- This time focus on zinc loss in the process...

Ash

Ash consists of zinc oxide. The zinc content is about 70-80% Total zinc consumption for ash: about 15-20% Sold for 35-45% of the zinc price

Dross

- Dross / hard zinc consists of iron-zinc phase
- Stands for about 7-11% of zinc consumption
- Not possible to recycle on the galvanizing plant Sold for 65-75% of the zinc price
- Used for the production of zinc oxide

Average Fe values in dross is 2,3 - 2,5% - Best values seen around 3,5% - worse values: < 1%

Data

Waste	Share of purchased zinc	Per tonnes of hdg steel	Zinc content	Selling price
Ash	15-20 %	4-25 kg 0.4-2.5 %	70-80 %	35-45 %
Hard zinc	7-11 %	5-30 kg 0.5-3 %	Ca 97-98 %	65-75 %

How large is the loss?

- Assume a zinc consumption of 180 tonnes and a hard zinc production of 16 ton => 8,9 % of purchased zinc goes into dross
- 180 tons of zinc and a volume of galvanized steel of 2 647 tonnes per year (average 6.8% of zinc per tonne of steel) causes the percentage of hard zinc to be 16/2 647 = 0.6% per tonne of galvanized steel ... (does not sound so high - but costs anyway money)

 $16\ 000\ kg\ x\ 30\ kr/kg = 480\ 000\ SEK$

Sales price: 70 % of purchase price, ie 30 % "loss" = 144 000 SEK in this case ...

Classification of waste

New directive from the European Commission (April 2018)

ANH = Absolutely Non Hazardous AH= Absolutely Hazardous

Type of waste	Classification
Ash	ANH
Hard zinc	ANH
Solid waist from gas treatment	AH
Spent flux	AH
Wastes not otherwise specified	ANH

Some of the residues can be 'hazardous' for transport even if they not are classified as hazardous in the waste lists.

