

General Galvanizing - Contribution to steel reactivity - Steel chemistry and

expected coatings-

Nordic Galvanizers 23 & 24 April 2019 Lund

Roger Pankert

Content

Observations about different steels and reactivity

- Influence of carbon content
- Influence of steel poisons:
 P, S
- Influence of alloying elements: Si, Al, Mn
- Explanation attempts

Steel composition

- Microstructures
- Coating architecture
- View on non reactive steels

Zn-Fe reaction during Galvanizing

Fe is steel

- Alloying elements
 - Si, P, S
 - -AI
 - Ti, Mn, Mo, ...
- Production history
 - -hot or cold rolled
 - Microstructure & dislocations
 - Hydrogen
 - Roughness

Zn is not just Zn

- Alloying elements
 - Pb, Bi, Sn, ..
 - Al, (Mg), …
 - Ni,
- Impurities
 Cu, Cd,

- Uneven coatings
- Surface defects
- Abnormalities

Fe dissolution in liquid Zinc

- Dissolved Fe creates intermetallic phases
 - δ-phase: 12% Fe
 - ζ-phase: 7%Fe
- ζ forms first and transforms later into δ
- 10 g dissolved Fe/m2 can:
 - promote 20 μm ζ-phase layer
 - promote 11 μ m δ -phase layer

The Fe-loss for a 0,2% Si containing steel is only 15% higher than for a 0,02% SI containing steel!

Fe dissolution in liquid Zinc

- L: vacancy
- B: interstitial atom
- S: foreign atom
- A: anti-phase-boundary
- Z. twinboundary
- P: coherent phase-boundary
- ⊥: dislocation

Fe "attack" strongest where lattice is destroyed!

Attempts to explain reactivity of Si in steel by hydrogen theory (IKS Germany)

O Tauchzeit 3 Min.

Temperatur des Zinkbades 460°C

Durchschnittlicher Wasserstoffgehalt in Si-beruhigten Stählen nach dem Beizen und vor dem Verzinken

Typische Strukturen bei Verzinkungstemperaturen zwischen 435 ℃ – 490 ℃

Niedrigsilizium- Bereich 70 µm	Sandelin-Bereich 300 µm	Sebisty-Bereich < 450 ℃ 150 μm	Sebisty-Bereich > 450 ℃ 100 μm	Hochsilizium- Bereich 250 µm

Shematic compositions of coatings

Fig. 40: General survey of the crystalline structure in hot-dip batch galvanizing for lowphosphorus structural steel in conventional zinc melt (galvanizing time > 5 minutes)

..... but there must be something more to be considered

Microstructure steel

Depends on steel chemistryDepends on cooling parameters

Iron and Fe-C phase diagram (Infl. of Carbon)

even ferrite structure.

irregular ferrite-perlite structure

Influence of Carbon

- Amount of Carbon is the most significant element for microstructure (Ferrite, Perlite, ...)
- Diffusion of C responsible for growth of crystals
- Diffusion speed lowest at eutectoid concentration
- 0,025% solubility at 727 ¤C
- At eutectoid composition around 12% Fe₃C (in Perlite) plus Ferrite
- The higher the Carbon, the more crystals, the more attack surface by the liquid Zn
- Reactivity increases (slightly)

Diffusion and "equilibrium" of alloying elements depends on "space"

Reactivity of steel

- Coating thickness depends on dissolved Fe
- Dissolved Fe increases with.
 - Surface of grain boundaries
 - Amount of distortions
- Coating thickness depends on
 - amount Fe captured in δ-layer
 - Amount Fe captured in ζ-layer

- L: vacancy
- B: interstitial solution ⊢: dislocation
- Etc ...

Inluence of atomic radius on steel lattice

 Elements << Fe go to interstitial places

- Dislocations
- Hardening and reduced
 elongation
- Twin formation
- Elements close Fe take Feplaces in lattice
- Elements > Fe take Fe places in lattice and increase lattice constant
 - Improved ductility
 - Better diffusion (stabilisation)

Steel poisons

Phosphorus

- huge segregations
- Low diffusion speed
- From on 0,01% P => brittleness

Sulfur

- Huge segregations
- Solubility in ferrite: 0,02%
- (negative effect can be suppressed by Mn)

Influence of Silicon

- Si has low solubility in Fe
- Lowers solubility of c in Ferrit
 - Smaller Ferrite particles
 - More grain boundaries
 - More dislocations
- Destabilisation of Cementite (Fe₃C)
 - Weaker grain-boundaries
- Below solubility limit therefore no or small influence on reactivity
- Above solubility level
 - Fe₃C less stable
- Precipitation of FeSi-particles
 - Tetragonal
 - Interstitial solutions with vacancies

Influence of Aluminium

Stabilizes ferrite

Low additiond (favours small crystals)

Larger additions: larger ferrite crystals

Reduced amount of grain boundary Increased ductility

Less dislocations

Increased diffusion speed of Carbon

Carbon agglomeration on grain boundaries

Reduced wettability

Infl. Al in Zn-melt

Abb. 13: Abhängigkeit der Hemmdauer vom Aluminium

Influence of Manganese

- Huge solubility in ferrite (10%9
- Capts S and Si
 - Mno-MnS
 - 2MnO-SiO2
- Promotes large grains
- Promotes C-diffusion
- Improves ductility of the steel

0,064C-0,019Si-0,008P-0,043AI-1,447Mn

Tests on Al-killed steels (traditional Zinc)

 $0 \mu m$

BOLIDEN

 $0 \mu m$

 $10 \, \mu m$

Tests on Al-killed steels (Zn ⇔ ZnNi)

Ni seems to promote δ -phase growth and therefore reduces coating thickness

Fe loss and steel reacticity schematic

Revision ISO 14713-2

 A footnote to Table 1 (Coating characteristics related to steel chemistry) that recognises that steels containing <0.01% silicon that also have aluminium contents >0.035% might exhibit reduced levels of coating cohesion and lower reactivity that could result in a lower than expected coating thickness.

Chemical Com	position						-	-
Chemical Con	position (La	dle analysis)						^
C (max %)	Si (max %)	Mn (max %)	P (max %)	S (max %)	Al _{tor} (min %)	Nb (max %)	V (max %)	Ti (max %)
0.10	0.031)	1.50	0.025	0.010	0.015	0.092)	0.202	0.152
The steel is grain ref	alent Values							
	1	Thickness (mm)				1.80 - 16.00		
nis website uses co	okies to enhance	your experience. E	By continuing to u	se this website yo	ou are agreeing to	our <u>Cookie Policy</u> .		×
							anere la com	~ 90 2
5								

Conclusions

S, P and Si increase Fe-loss

-High Fe-amount per time-unit mostly promotes ζ-phase

Al and Mn reduce Fe-loss

- Fe-dissolved has time enough to react toward δ -phase

Actually no bath composition available to ameliorate coating requirements on both (reactive and nonreactive) steel grades

Thank you for your attention!

