

Implementing the EU BAT Conclusions in Environmental Permitting of Galvanizing Plants

Murray Cook

European General Galvanizers Association mcook@egga.com

EGGA	AUSTRIA Fachverband der Eisen-und Metallwarenindustrie Österreichs	ITALY Associazione Italiana Zincatura
GALVANIZING EUROPE	BELGIUM, NETHERLANDS & LUXEMBOURG Zink Info Benelux	NORDIC COUNTRIES Nordic Galvanizers
The Federation of National Galvanizing Industry Associations in	CZECH & SLOVAK REPUBLICS ACSZ - Czech and Slovak Galvanizers Association	POLAND Polskie Towarzystwo Cynkownicze
Europe	FRANCE Galvazinc Association	ROMANIA ANAZ
	GERMANY Industrieverband Feuerverzinken eV	SPAIN Asociación Técnica Española de Galvanización
14 Associations 21 Countries	GREECE Hellenic Galvanizers Association	TURKEY GALDER
	HUNGARY Magyar Tüzihorganyzók Szövetsége	UK & IRELAND Galvanizers Association

Associate Members

I. Evensen Industriovner www.che.no

Main Suppliers to the Industry *...and Intergalva* Partners

— www.imr-group.com —

Engineered for Galvanizing

19-20 June: Conference

21 June: Plant visits to:

- OTN
- Zinkpower
- Collini

Platinum Sponsors

KOERNER 🕵 🥌 SCHE

Gold Sponsors

Register at:

www.galvanizingeurope.org

This Seminar Will Cover...

✓ BACKGROUND TO THE **LEGISLATION** & WHAT IS NEW?

- ✓ FERROUS METAL PROCESSING 'BREF' AND 'BAT' CONCLUSIONS DEVELOPMENT
- ✓ HOW TO FIND WHAT IS RELEVANT TO BATCH GALVANIZING?
- ✓ BREF DATA COLLECTION **BASIS FOR THE BAT-AELS AND BAT-AEPLS**
- ✓ BAT-AELS AND BAT-APELS FOR BATCH GALVANIZING
- ✓ IN DETAIL HCL EMISSIONS FROM **PICKLING**
- ✓ IN DETAIL DUST EMISSIONS FROM GALVANIZING BATH
- ✓ "APPLICABILITY" CONCEPTS
- ✓ MONITORING REQUIREMENTS
- ✓ BAT REQUIREMENTS RELATED TO **MANAGEMENT SYSTEMS**
- ✓ ADDITIONAL POINTS (*TIME PERMITTING*) / Q & A

Background to the Legislation & What is new?

Boring....but important...

Environmental Permitting of Galvanizing Plants: IPPC Situation in 2001 - 2022

Integrated Pollution Prevention and Control (IPPC)

Reference Document on Best Available Techniques in the Ferrous Metals Processing Industry

December 2001

- Basis 1996 'IPPC Directive'
- 'BREF' of 538 Pages
- For INFORMATION
 EXCHANGE between EU
 Member States

- Permit Requirements Set at National (Member State) and local level

- High level of flexibility in emission limits and required pollution control equipment

 Emission levels given in the BREF for any Best Available Technology were <u>not legally</u> <u>binding</u> on the Member State or the industry

Environmental Permitting of Galvanizing Plants: IED New Situation – from November 2022

JRC SCIENCE FOR POLICY REPORT

Best Available Techniques (BAT) Reference Document for the Ferrous Metals Processing Industry

> Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)

Aries, E., Gómez, Benavides, J., Mavromatis, S., Klein, G., Chronopoulos, G., Roudier, S.

2022

 Basis – 2010 'Industrial Emissions Directive'
 'BREF' (850 Pages)
 BAT Conclusions (65 Pages) are <u>legally binding</u> on Member States 4.11.2022 EN Official Journal of the European Union

L 284/69

EGGA

COMMISSION IMPLEMENTING DECISION (EU) 2022/2110 of 11 October 2022 establishing the best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions, for the ferrous metals processing industry (notified under Acument (2022) 7054)

(Text with EEA relevance

THE EUROPEAN COMMISSION

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) (¹), and in particular Article 13(5) thereof,

Whereas:

- 1) Best available techniques (BAT) conclusions are the reference for setting permit conditions for installations covered by Chapter II of Directive 2010/75[U2 and competent authorities should set emission limit values which ensure that, under normal operating conditions, emissions do not exceed the emission levels associated with the best available techniques as laid down in the BAT conclusions.
- (2) In accordance with Article 13(4) eD furctive 2010/75/EU, the forum composed of representatives of Member States, the industries concerned and non-governmental organisations promoting environmental protection, established by Commission Decision of 16 May 2011 (•), provided the Commission on 17 December 2021 with its opinion on the proposed content of the BAT reference document for the ferrous metals processing industry. That opinion is publicly available (•).
- (3) The BAT conclusions set out in the Annex to this Decision take into account the opinion of the forum on the proposed content of the BAT reference document. They contain the key elements of the BAT reference document.
- (4) The measures provided for in this Decision are in accordance with the opinion of the Committee established by Article 75(1) of Directive 2010/75/EU,

HAS ADOPTED THIS DECISION:

Article 1

The best available techniques (BAT) conclusions for the ferrous metals processing industry, as set out in the Annex, are adopted.

BAT Conclusions

Article 2

This Decision is addressed to the Member States.

4.11.2022 EN Official Journal of the European Union L 284/69

COMMISSION IMPLEMENTING DECISION (EU) 2022/2110

of 11 October 2022

establishing the best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions, for the ferrous metals processing industry

(notified under document C(2022) 7054)

(Text with EEA relevance)

THE EUROPEAN COMMISSION.

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollotion prevention and control) (¹), and in particular Article 13(5) thereof,

Whereas:

- (1) Best available techniques (BAT) conclusions are the reference for setting permit conditions for installations covered by Chapter II of Directive 2010/75/EU and competent authorities should set emission limit values which ensure that, under normal operating conditions, emissions do not exceed the emission levels associated with the best available techniques as laid down in the BAT conclusions.
- (2) In accordance with Article 13(4) of Directive 2010/75/EU, the forum composed of representatives of Member States, the industries concerned and non-governmental organisations promoting environmental protection, established by Commission Decision of 16 May 2011 (?), provided the Commission on 17 December 2021 with its opinion on the proposed content of the BAT reference document for the ferrous metals processing industry. That opinion is publicly available (?).
- (3) The BAT conclusions set out in the Annex to this Decision take into account the opinion of the forum on the proposed content of the BAT reference document. They contain the key elements of the BAT reference document.
- (4) The measures provided for in this Decision are in accordance with the opinion of the Committee established by Article 75(1) of Directive 2010/75/EU,

HAS ADOPTED THIS DECISION:

Article 1

The best available techniques (BAT) conclusions for the ferrous metals processing industry, as set out in the Annex, are adopted.

Article 2

This Decision is addressed to the Member States.

- () O[L 334, 17.12.2010, p. 17.
- Commission Decision of 16 May 2011 establishing a forum for the exchange of information pursuant to Article 13 of Directive 2010/75/EU on industrial emissions (OI C 146, 17.5.2011, p. 3).
- () https://circabc.europa.eu/ui/group/06/33a94-9829-4eee-b187-21bb783a0fbf/library/b5ba39b2-77ca-488a-889b-98e13cee5141/

FMP BAT Conclusions published November 2022

Obligations for Member States / National Authorities

BAT and BAT Associated Emission Limits (BAT-AELs)

NEW Plant Permits:

IMMEDIATE

EGGA

EXISTING Plant Permits: MUST BE REVIEWED BY 4/11/2026 LATEST

4.11.2022 SV Europeiska unionens officiella tidning KOMMISSIONENS GENOMFÖRANDEBESLUT (EU) 2022/2110 av den 11 oktober 2022 om fastställande av BAT-slutsatser för industri för behandling av järnbaserade med direktiv 2010/75/EU om industriutsläpp	L 284/69 Of of t metaller, i enlighet	ficial Journal he European Union	L 284
(delgivet med nr C(2022) 7054) (Text av betydelse för EES)	English edi	ion Legislation	Volume 65 4 November 2022
EUROPEISKA KOMMISSIONEN HAR ANTAGIT DETTA BESLUT med beaktande av fördraget om Europeiska unionens funk med beaktande av Europaparlamentets och rådets direkti 4.11.2022	Euroopan unionin virallinen lehti	L 284/69	
 av följande skäl: (1) Slutsatserna om bästa tillgängliga teknik (BAT-sluts, för anläggningar som omfattas av kapitel II i direk utsläppsgränsvärden som säkerställer att utsläj mukaist utsläppsnivåer som motsvarar bästa tillgängliga teki (2) Det forum bestående av företrädare för medlemssta nisationer som inrättats genom kommissionens be enlighet med artikel 13.4 i direktiv 2010/75/EU sit referensdokumentet för industri för behandling av ja 	KOMISSION TÄYTÄNTÖÖNPANOPÄÄTÖS (E annettu 11 päivänä lokakuuta 2022 uden päästöistä annetun Euroopan parlamentin ja net en parasta käytettävissä olevaa tekniikkaa (BAT) koske rautametallien jalostusteollisuutta va (tiedoksiannettu numerolla C(2022) 705 (ETA:n kannalta merkityksellinen teksu	U) 2022/2110, 2, avoston direktiivin 2010/75/EU vien päätelmien vahvistamisesta eten 4)	
 (3) De BAT-slutsatser som återfinns i bilagan till detta beslut beaktar yttrandet från forume i BAT-referensdokumentet. De innehåller de viktigaste delarna i BAT-referensdokumen (4) De åtgärder som föreskrivs i detta beslut är förenliga med yttrandet från den kol vil 175 biller i biller attalen som föreskrivs. 	4.11.2022 DA	Den Europæiske Unions Tidende	L 284/69
artikel / 3.1 1 direktiv 2010// 5/EU. HÄRIGENOM FÖRESKRIVS FÖLJANDE. Artikel 1	KOMMISSIONENS om fastsættelse af BAT (bedste til og Rådets direktiv 2010/75/EU c	GENNEMFØRELSESAFGØRELSE (EU) 2022/2110 af 11. oktober 2022 gængelige teknik)-konklusioner i henhold til Europa-Pa m industrielle emissioner for jernmetalforarbejdningsin Aeddelt under nummer C(2022) 7054)	arlamentets ndustrien
Härmed antas de BAT-slutsatser för industri för behandling av järnbaserade metaller som ang	(*	(EØS-relevant tekst)	

L 334/51

EU INDUSTRIAL EMISSIONS DIRECTIVE (2010) ANNEX I

ANNEX I

Categories of activities referred to in Article 10

- 2. Production and processing of metals
- 2.1. Metal ore (including sulphide ore) roasting or sintering
- 2.2. Production of pig iron or steel (primary or secondary fusion) including continuous casting, with a capacity exce 2,5 tonnes per hour
- 2.3. Processing of ferrous metals:
 - (a) operation of hot-rolling mills with a capacity exceeding 20 tonnes of crude steel per hour;
 - (b) operation of smitheries with hammers the energy of which exceeds 50 kilojoule per hammer, where the calorific power used exceeds 20 MW;

FMP BREF

STM BREF

- (c) application of protective fused metal coats with an input exceeding 2 tonnes of crude steel per hour.
- 2.4. Operation of ferrous metal foundries with a production capacity exceeding 20 tonnes per day
- 2.5. Processing of non-ferrous metals:
 - (a) production of non-ferrous crude metals from ore, concentrates or secondary raw materials by metallurgical, chemical or electrolytic processes;
 - (b) melting, including the alloyage, of non-ferrous metals, including recovered products and operation of non-ferrous metal foundries, with a melting capacity exceeding 4 tonnes per day for lead and cadmium or 20 tonnes per day for all other metals.

2.6. Surface treatment of metals or plastic materials using an electrolytic or chemical process where the volume of the treatment vats exceeds 30 m^3

>2 TONNES OF STEEL / HOUR

Confusion!!

> 30 m³ of total treatment tanks

EGGA

EU BAT CONCLUSIONS FOR FERROUS METAL PROCESSING (2022)

1. BEST AVAILABLE TECHNIQUES (BAT) CONCLUSIONS FOR THE FERROUS METALS PROCESSING INDUSTRY

SCOPE

These BAT conclusions concern the following activities specified in Annex I to Directive2010/75/EU:

2.3. Processing of ferrous metals:

EN

- (a) operation of hot rolling mills with a capacity exceeding 20 tonnes of crude steel per hour;
- (c) application of protective fused metal coats with an input exceeding 2 tonnes of crude steel per hour; this includes hot dip coating and batch galvanising.
- 2.6. Surface treatment of ferrous metals using electrolytic or chemical processes where the volume of the treatment vats exceeds 30 m³, when it is carried out in cold rolling, wire drawing or batch galvanising.

GOOD: CLARITY THAT ONLY THE FMP BAT CONCLUSIONS APPLY TO BATCH GALVANIZING PLANTS

BAD: THRESHOLD FOR 'SURFACE TREATMENT' TO BE APPLIED FOR BATCH GALVANIZING PLANTS

The new Ferrous Metal Processing BREF and BAT Conclusions -Development

Understanding the new legislation...

5 Sectors of the "Ferrous Metal Processing" (FMP) BREF

Continuous Hot Dip Coating (sheet and wire) Batch Galvanizing (including tubes)

Terminology Explained

Acronym	Full Term	Legal Status
BAT-AEL	Best Available Technique – Associated Emission Limit Example: Dust emissions to Air (mg/Nm ³)	Mandatory for National Government to set the emission limit in the plant's permit within this <u>range</u> of limit values
BAT-AEPL	Best Available Technique – Associated Environmental Performance Level Example: Energy use (kWh/tonne)	Optional for National Government to set performance level in the plant's permit using this <u>range</u> of performance values

BAT-AELs and **BAT-AEPLs** are always given as a <u>range</u> of values to represent possible values for different techniques used in well-performing plants

More Batch Galvanizing BATs in the 'General' section than in the 'Batch Galvanizing' section

	All FMP Sectors Batch Galvanizing only		
Main BREF: Techniques and Data	Chapter 8:Techniques to consider in the determination of BAT in more than one sector	Chapter 6: Batch Galvanizing	
BAT Conclusions : For IED permitting	Chapter 9.5: General BAT Conclusions Examples: 'Energy Efficiency'; 'Dust emissions to air from hot dipping'	Chapter 9.10: Batch Galvanizing Examples: 'HCI Emissions to air from pickling'; Separate stripping tanks	
	<u>21</u> BATs of direct or indirect relevance to batch galvanizing	<u>6</u> BATs relevant to batch galvanizing	

Example: BAT for ash and dross is in the 'General' section...because also applicable to continuous hot dip coating and wire galvanizing

BAT 16. In order to increase the material efficiency of hot dipping in the coating of wires and in batch galvanising, and to reduce the generation of waste, BAT is to use all of the techniques given below.

	Technique	Description		
a.	Reduction of the generation of bottom dross	The generation of bottom dross is reduced, e.g. by sufficient rinsing after pickling, removing the iron from the fluxing solution (see BAT 15 (d)), using fluxing agents with a mild pickling effect and avoiding local overheating in the galvanising kettle.		
b.	Prevention, collection and reuse of zinc splashes in batch galvanising	The generation of zinc splashes from the galvanising kettle is reduced by minimising carry-over of the fluxing solution (see BAT 26 (b)). Zinc splashes out of the kettle are collected and reused. The area surrounding the kettle is kept clean to reduce contamination of the splashes.		
c.	Reduction of the generation of zinc ash	 The formation of zinc ash, i.e. zinc oxidation on the bath surface, is reduced for example by: sufficient drying of the workpieces/wires before dipping; avoiding unnecessary disturbances of the bath during production, including during skimming; in continuous hot dipping of wires, reducing the bath surface that is in contact with air using a floating refractory cover. 		

1.1.7.4. Emissions to air from hot dipping

BAT 26. In order to reduce emissions to air of dust and zinc from hot dipping after fluxing in hot dip coating of wires and in batch galvanising, BAT is to reduce the generation of emissions by using technique (b) or techniques (a) and (b), to collect the emissions by using technique (c) or technique (d), and to treat the waste gases by using technique (e) given below.

Technique		Description	Applicability	
Redı	ution of generation of emissions			
a. Low-fume flux		Ammonium chloride in fluxing agents is partly substituted with other alkali chlorides (e.g. potassium chloride) to reduce dust formation.	Applicability may be restricte due to product specifications.	
b.	Minimisation of carry-over of the fluxing solution	 This includes techniques such as: — allowing enough time for the fluxing solution to drip off (see BAT 15 (c)); — drying before dipping. 	Generally applicable.	
Colle	ection of emissions			
c.	Air extraction as close as possible to the source	Air from the kettle is extracted, for example using lateral hood or lip extraction.	Generally applicable.	
d.	Enclosed kettle combined with air extraction	Hot dipping is carried out in an enclosed kettle and air is extracted.	Applicability to existing plants may be limited where enclosure interferes with an existing transport system for workpieces in batch galvanising.	
Was	te gas treatment	•		
e.	Fabric filter	See Section 1.7.2.	Generally applicable.	

BAT-associated emission level (BAT-AEL) for channelled dust emissions to air from hot dipping after fluxing in hot dip coating of wires and in batch galvanising

Parameter	Unit	BAT-AEL (Daily average or average over the sampling period)
Dust	mg/Nm ³	< 2-5

BAT STATEMENT

BEST AVAILABLE TECHNIQUES – LINKED TO THE BAT STATEMENT

BAT-AEL (QUANTATIVE LIMIT AS A RANGE)

How to find what is relevant to Batch Galvanizing?

It is not always obvious which techniques are applicable to batch galvanizing plants – giving high potential for confusion for national permitting authorities

Example: Important to read the BAT title

1.1.7.3 Emissions to air from pickling

carefully...

EGGA

BAT 24. In order to reduce emissions to air of dust, acids (HCl, HF, H_2SO_4) and SO_x from pickling in hot rolling, cold rolling, hot dip coating and wire drawing, BAT is to use technique (a) or technique (b) in combination with technique (c) given below.

	Technique	Description
Co	llection of emissions	
a.	Continuous pickling in closed tanks combined with fume extraction	Continuous pickling is carried out in closed tanks with limited entry and exit openings for the steel strip or wire. The fumes from the pickling tanks are extracted.
b.	Batch pickling in tanks equipped with lids or enclosing hoods combined with fume extraction	Batch pickling is carried out in tanks equipped with lids or enclosing hoods that can be opened to allow charging of the wire rod coils. The fumes from the pickling tanks are extracted.
Wa	iste gas treatment	
c.	Wet scrubbing followed by a demister	See Section 1.7.2.

In this example, 'batch galvanizing' is not mentioned so it is <u>not</u> applicable to our plants ('hot dip coating' = <u>continuous</u> galvanizing lines)

But...in some BATs the 'non-relevance' is not so obvious...so Table 11.1 is vital ...

BAT 31. In order to reduce emissions to water, **BAT** is to treat waste water using a combination of the techniques given below.

	Technique (¹)	Typical pollutants targeted				
Pre	Preliminary, primary and general treatment, e.g.					
a.	Equalisation	All pollutants				
b.	Neutralisation	Acids, alkalis				
c.	Physical separation, e.g. screens, sieves, grit separators, grease separators, hydrocyclones, oil-water separation or primary settlement tanks	Gross solids, suspended solids, oil/grease				
Ph	vsico-chemical treatment, e.g.					
d.	Adsorption	Adsorbable dissolved non-biodegradable or inhibitory pollutants, e.g. hydrocarbons, mercury				
e.	Chemical precipitation	Precipitable dissolved non-biodegradable or inhibitory pollutants, e.g. metals, phosphorus, fluoride				
f.	Chemical reduction	Reducible dissolved non-biodegradable or inhibitory pollutants, e.g. hexavalent chromium				
g.	Nanofiltration/reverse osmosis	Soluble non-biodegradable or inhibitory pollutants, e.g. salts, metals				
Bio	logical treatment, e.g.					
h.	Aerobic treatment	Biodegradable organic compounds				
Sol	ids removal, e.g.					
i.	Coagulation and flocculation					
j.	Sedimentation					
k.	Filtration (e.g. sand filtration, microfiltration, ultrafiltration)	Suspended solids and particulate-bound metals				
1.	Flotation					
(1)	The descriptions of the techniques are given in Section	1.7.3.				

11.4 Information on the reported use of BAT in the various FMP industrial sectors

The following table contains information as submitted by the FMP TWG on the current use of techniques that are presented in the BAT conclusion chapter of this document for the various FMP sectors. The information in this table represents the available knowledge of the FMP TWG on which BAT are currently used (at the time of writing) in the various FMP sectors in the Member States of the European Union. It cannot be considered an indication of the applicability of those BAT as per IED Article 3(10)(b). Applicability information can be found in the applicability clauses of the BAT conclusions chapter of this document (Chapter 9) as well as in the detailed descriptions of the techniques in Sections X.4 for the sector-specific techniques to be considered in the determination of the BAT (i.e. Sections 2.4, 3.4, 4.4, 5.4 and 6.4) or in Chapter 8 for techniques applied in more than one sector.

Table 11.1: Information on the reported use of BAT in the various FMP sectors

BREF section number	Title of technique	Hot rolling	Cold rolling	Wire drawing	Continuous hot dip coating	Batch galvanising	Relevant BAT number in Chapter 9
2.4.1.1	Enclosed scarfing (other than manual scarfing) combined with air extraction and waste gas treatment	U	Ν	Ν	Ν	N	42a
2.4.1.2	Enclosed grinding combined with air extraction and waste gas treatment	U	Ν	N	N	Ν	42a
2.4.1.3	Computer-aided quality control (CAQC)	U	Ν	Ν	Ν	Ν	40a
2.4.1.4	Edging or trimming of wedge-type slabs	U	Ν	Ν	Ν	Ν	40c
2.4.1.5	Slab slitting	U	Ν	Ν	Ν	Ν	40b
2.4.2.1	Process gas management system	U	U	N	U	Ν	20b, 21, 22
2.4.2.5	Oxy-fuel combustion	U	Ν	N	U	Ν	11h, 22h
2.4.2.6	Flameless combustion	U	Ν	N	U	Ν	11i, 22g
2.4.2.7	Pulse-fired burner	U	Ν	N	Ν	U	11j
2.4.2.8	Low-NO _X burners	U	U	U	U	U	22d
2.4.2.9	Selective catalytic reduction (SCR)	U	U	N	N	N	22i

U: Reported to be used at the time of writing; N: Reported as not used at the time of writing; NI: No information.

	Technique (¹)	Typical pollutants targeted				
Pre	eliminary, primary and general treatment, e.g.					
a.	Equalisation	All pollutants				
b.	Neutralisation	Acids, alkalis				
c. Physical separation, e.g. screens, sieves, grit separators, grease separators, hydrocyclones, oil-water separation or primary settlement tanks		Gross solids, suspended solids, oil/grease				
Ph	ysico-chemical treatment, e.g.					
d.	Adsorption	Adsorbable dissolved non-biodegradable or inhibitory pollutants, e.g. hydrocarbons, mercury				
e.	Chemical precipitation	Precipitable dissolved non-biodegradable or inhibitory pollutants, e.g. metals, phosphorus, fluoride				
f.	Chemical reduction	Reducible dissolved non-biodegradable or inhibitory pollutants, e.g. hexavalent chromium				
g.	Nanofiltration/reverse osmosis	Soluble non-biodegradable or inhibitory pollutants, e.g. salts, metals				
Bic	blogical treatment, e.g.	- -				
h.	Aerobic treatment	Biodegradable organic compounds				
Sol	lids removal, e.g.					
i.	Coagulation and flocculation					
j.	Sedimentation					
k.	Filtration (e.g. sand filtration, microfiltration, ultrafiltration)	Suspended solids and particulate-bound metals				
1.	Flotation					
(1)	(1) The descriptions of the techniques are given in Section 1.7.3.					

BAT 31. In order to reduce emissions to water, BAT is to treat waste water using a combination of the techniques given below.

BREF section number	Title of technique	Hot rolling	Cold rolling	Wire drawing	Continuous hot dip coating	Batch galvanising	Relevant BAT number in Chapter 9
	· · · · · · ·			1			
8.9.3	Chemical precipitation	U	U	U	U	Ν	31e
8.9.4	Chemical reduction	U	U	N	U	Ν	31f
8.9.5	Coagulation and flocculation	U	U	U	U	Ν	31i
8.9.6	Equalisation	U	U	U	U	Ν	31a
8.9.7	Filtration	U	U	U	U	Ν	31k
8.9.8	Flotation	U	U	U	U	Ν	311
8.9.9	Nanofiltration	U	N	N	N	Ν	31g
8.9.10	Neutralisation	U	U	U	U	Ν	31b
8.9.11	Physical separation	U	U	U	U	Ν	31c
8.9.12	Reverse osmosis	U	N	N	N	Ν	31g
8.9.13	Sedimentation	U	U	U	U	Ν	31j

BREF DATA COLLECTION – BASIS FOR THE BAT-AELS AND BAT-AEPLS

Deriving BAT-AELs and BAT-AEPLs : based on Data Questionnaire

Detailed data collected from 84 batch galvanizing plants in 13 Countries

Ę

Specific bottom dross (hard zinc) (kg/t coated) 2016

Average bottom dross (hard zinc) over 3 years

₽EGG∕

Note: Line 236-2 is a specialist centrifuge line for galvanising of nails.

50

For 'Key Environmental Issues': Data was used to derive limits Example – Dust Emissions to Air

For 'Key Environmental Issues': Data was used to derive limits Example – Dust Emissions to Air

Dust concentration measurement 1 (mg/Nm3)
 Dust concentration measurement 2 (mg/Nm3)

F

- Dust concentration measurement 3 (mg/Nm3)

BAT-AELS AND BAT-APELS FOR BATCH GALVANIZING

Table 1.17

BAT-associated emission level (BAT-AEL) for channelled dust emissions to air from hot dipping after fluxing in hot dip coating of wires and in batch galvanising

Parameter	Unit	BAT-AEL (Daily average or average over the sampling period)
Dust	mg/Nm ³	< 2–5

BAT-associated emission level (BAT-AEL) for channelled HCl emissions to air from pickling and stripping with hydrochloric acid in batch galvanising

Parameter	Unit	BAT-AEL (Daily average or average over the sampling period)	
HCl	mg/Nm ³	< 2–6	

Table 1.13

BAT-associated emission level (BAT-AEL) for channelled NOX emissions to air and indicative emission level for channelled CO emissions to air from heating the galvanising kettle in batch galvanising

Parameter	Unit	BAT-AEL (Daily average or average over the sampling period)	Indicative emission level (Daily average or average over the sampling period)
NO _X	mg/Nm ³	70-300	No indicative level
СО	mg/Nm ³	No BAT-AEL	10-100

Example – recognition that specific energy (kWh/t) varies with production levels (t/m³ kettle volume)

Chapter 6

Figure 6.5: Specific energy consumption (kWh/t of feedstock processed) in batch galvanising including the yearly production throughput (production/volume hot dipping bath).

BAT-associated environmental performance level (BAT-AEPL) for specific energy consumption in batch galvanising

Specific process(es)	Unit	BAT-AEPL (Yearly average)	
Batch galvanising	kWh/t	300-800 (¹) (²) (³)	

- (¹) The higher end of the BAT-AEPL range may be higher when centrifugation is used to remove the excess zinc and/or when the galvanising bath temperature is higher than 500 °C.
- (2) The higher end of the BAT-AEPL may be higher and up to 1 200 kWh/t for batch galvanising plants operating at an average yearly production throughput below 150 t/m³ of kettle volume.
- (³) In the case of batch galvanising plants producing mainly thin products (e.g. < 1,5 mm), the higher end of the BAT-AEPL range may be higher and up to 1 000 kWh/t.

Not perfect – but gives some flexibility

Footnotes – are very important!!

Table 1.5

BAT-associated environmental performance level (BAT-AEPL) for specific pickling acid consumption in batch galvanising

Pickling acid	Unit	BAT-AEPL (3-year average)
Hydrochloric acid, 28 wt-%	kg/t	13-30 (¹)

(¹) The higher end of the BAT-AEPL range may be higher and up to 50 kg/t when galvanising mainly workpieces with a high specific surface area (e.g. thin products < 1,5 mm, tubes with a wall thickness < 3 mm) or when regalvanising is carried out.

Footnotes – are very important!!

IN DETAIL - PICKLING

Enclosed Pretreatment

Open Pickling Baths

Figure 6.31: Schematic for an enclosed pretreatment section in batch galvanising

1.6.3. **Emissions to air**

BAT 62. In order to reduce emissions of HCl to air from pickling and stripping in batch galvanising, BAT is to control the operating parameters (i.e. temperature and acid concentration in the bath) and to use the techniques given below with the following order of priority:

Enclosed pretreatment + wet scrubber

Hood / lip extraction + wet scrubber

Control temp + concentration + hood / lip extraction

- technique (a) in combination with technique (c);
- technique (b) in combination with technique (c);
- technique (d) in combination with technique (b);

— technique (d).

Control temp + concentration (open pickling baths)

Technique (d) is BAT only for existing plants and provided that it ensures at least an equivalent level of environmental protection compared to using technique (c) in combination with techniques (a) or (b).

BAT-associated emission level (BAT-AEL) for channelled HCl emissions to air from pickling and stripping with hydrochloric acid in batch galvanising

Parameter	Unit	BAT-AEL (Daily average or average over the sampling period)	
HCl	mg/Nm ³	< 2-6	

	Technique	Description	Applicabil	lity					
Colle	ection of emissions								
a.	Enclosed pretreatment section with extraction	The entire pretreatment section (e.g. degreasing, pickling, fluxing) is encapsulated and the fumes are extracted from the enclosure.	Only applicable plants and ma upgrades	e to new jor plant					
b.	Extraction by lateral hood or lip extraction	Acid fumes from the pickling tanks are extracted using lateral hoods or lip extraction at the edge of the pickling tanks. This may also include emissions from degreasing tanks.	Applicability in plants may be by a lack of space	existing restricted ce.					
Was	te gas treatment		•						
c.	Wet scrubbing followed by a demister	See Section 1.7.2.	Generally applic	cable					
Redı	uction of generation of emissic	ns	70						+
d.	Restricted operating range for hydrochloric	Hydrochloric acid baths are strictly operated within the temperature and HCl concentration range determined by the following conditions: (a) $4 \degree C < T < (80 - 4 w) \degree C$; (b) $2 wt \% < w < (20 - T/4) wt \%$, where <i>T</i> is the pickling acid temperature expressed in °C and <i>w</i> the HCl concentration expressed in wt-%.	60 50 50 50 40 60 60 60 60 60 60 60 60 60 6	cable					
		The bath temperature is measured at least once every day. The HCl concentration in the bath is measured every time fresh acid is replenished and in any case at least once every week. To limit evaporation, movement of air across the bath surfaces (e.g. due to ventilation) is minimised.	20 10 0 0	2	4 6	8 1C) 12	14	16

18 20

BAT 7 – Monitoring Emissions to Air Important Footnotes

- ⁽¹⁾ To the extent possible, the measurements are carried out at the highest expected emission state under normal operating conditions.
- ⁽²⁾ The monitoring does not apply when only electricity is used.
- (³) If measurements are continuous, the following generic EN standards apply: EN 15267-1, EN 15267-2, EN 15267-3 and EN 14181.
- (4) If measurements are continuous, EN 13284-2 also applies.
- ⁽⁵⁾ If the emission levels are proven to be sufficiently stable, a lower monitoring frequency can be adopted but in any case at least once every 3 years.
- (⁶) In the event that techniques (a) or (b) of BAT 62 are not applicable, measurement of the HCl concentration in the gaseous phase above the pickling bath is carried out at least once every year.
- (⁷) The monitoring only applies when the substance concerned is identified as relevant in the waste gas stream based on the inventory given in BAT 2.
- (8) The monitoring does not apply if only natural gas is used as a fuel or when only electricity is used.

NORDIC GALVANIZERS' ANNUAL AND MEMBER MEETING 24-25 MAY 2023

Password: ng2425

IN DETAIL – DUST EMISSIONS FROM GALVANIZING BATH

BAT 26. In order to reduce emissions to air of dust and zinc from hot dipping after fluxing in hot dip coating of wires and in batch galvanising, BAT is to reduce the generation of emissions by using technique (b) or techniques (a) and (b), to collect the emissions by using technique (c) or technique (d), and to treat the waste gases by using technique (e) given below.

Technique		Description	Applicability
Ree	duction of generation	of emissions	
a.	Low-fume flux	Ammonium chloride in fluxing agents is partly substituted with other alkali chlorides (e.g. potassium chloride) to reduce dust formation.	Applicability may be restricted due to product specifications.
b.	Minimisation of carry-over of the fluxing solution	Generally applicable.	
Co	llection of emissions		
c.	Air extraction as close as possible to the source	Air from the kettle is extracted, for example using lateral hood or lip extraction.	Generally applicable.
d.	Enclosed kettle combined with air extraction	Hot dipping is carried out in an enclosed kettle and air is extracted.	Applicability to existing plants may be limited where enclosure interferes with an existing transport system for workpieces in batch galvanising.
Wa	ste gas treatment		
e.	Fabric filter	See Section 1.7.2.	Generally applicable.

Table 1.17:BAT-associated emission level (BAT-AEL) for channelled dust emissions to air
from hot dipping after fluxing in hot dip coating of wires and in batch galvanising

		BAT-AEL
Parameter	Unit	(Daily average or average over the
		sampling period)
Dust	mg/Nm ³	< 2-5

The associated monitoring is given in BAT 7.

<u>Required</u> - Bag / Fabric Filter - Minimise flux carry over – drying and drainage

<u>Extraction</u> – can be lip extraction or full enclosure

Low fume flux to be considered but not required

Wet scrubber is not BAT

"APPLICABILITY" CONCEPTS

Some special situations for Batch Galvanizing plants have been recognised (eg BAT-AEPL footnotes) ...but it is **important to read the 'Applicability' statements**...to obtain correct interpretation

Example: Recognition that markets for recycling of filter dusts are not always available

BAT 35. In order to reduce the quantity of waste sent for disposal from hot dipping, BAT is to avoid the disposal of zinc-containing residues by using all of the techniques given below.

	Technique	Description	Applicability		
a.	Recycling of fabric filter dust	Dust from fabric filters containing ammonium chloride and zinc chloride is collected and reused, e.g. to produce fluxing agents. This may take place on site or off site.	Only applicable in hot dipping after fluxing. Applicability may be restricted depending on the availability of a market.		
b.	Recycling of zinc ash and top dross	Metallic zinc is recovered from zinc ash and top dross by melting in recovery furnaces. The remaining zinc-containing residue is used, e.g. for zinc oxide production. This may take place on site or off site.	Generally applicable.		
c.	Recycling of bottom dross	Bottom dross is used, e.g. in the non- ferrous metals industries to produce zinc. This may take place on site or off site.	Generally applicable.		

Important

Similar 'applicability' recognition for waste acid

BAT 18. In order to reduce the quantity of spent pickling acid sent for disposal, BAT is to recover spent pickling acids (i.e. hydrochloric acid, sulphuric acid and mixed acid). The neutralisation of spent pickling acids or the use of spent pickling acids for emulsion splitting is not BAT.

Description

Techniques to recover spent pickling acid on site or off site include:

- i. spray roasting or using fluidised bed reactors for the recovery of hydrochloric acid;
- ii. crystallisation of ferric sulphate for the recovery of sulphuric acid;
- spray roasting, evaporation, ion exchange or diffusion dialysis, for the recovery of mixed acid;
- iv. use of spent pickling acid as a secondary raw material (e.g. for the production of iron chloride or pigments).

Applicability

In batch galvanising, if the use of spent pickling acid as a secondary raw material is restricted by market unavailability, neutralisation of spent pickling acid may exceptionally take place.

Important

'≩EGG/

MONITORING REQUIREMENTS

Monitoring Frequency Increased? Yes and No.

Emissions to Air: Monitoring

≥EGG/

BAT 7. BAT is to monitor channelled emissions to air with at least the frequency given below and in accordance with EN standards. If EN standards are not available, BAT is to use ISO, national or other international standards that ensure the provision of data of an equivalent scientific quality.

Substance/ Parameter	Specific process(es)	Sector	Standard(s)	Minimum monitoring frequency (1)	Monitoring associated with
СО	Feedstock heating (²)	HR, CR, WD, HDC		Once every year	RAT 22
	Heating of the galvanising kettle (²)	HDC of wires, <mark>BG</mark>		Once every year	Footnote 5 – not applicable 😕
	Hydrochloric acid recovery by spray roasting or by using fluidised bed reactors Mixed acid recovery by spray roasting	HR, CR, HDC, WD	EN 15058 (³)	Once every year	BAT 29

BAT 7 – Monitoring Emissions to Air Important Footnotes

- ⁽¹⁾ To the extent possible, the measurements are carried out at the highest expected emission state under normal operating conditions.
- ⁽²⁾ The monitoring does not apply when only electricity is used.
- (³) If measurements are continuous, the following generic EN standards apply: EN 15267-1, EN 15267-2, EN 15267-3 and EN 14181.
- (4) If measurements are continuous, EN 13284-2 also applies.
- ⁽⁵⁾ If the emission levels are proven to be sufficiently stable, a lower monitoring frequency can be adopted but in any case at least once every 3 years.
- (⁶) In the event that techniques (a) or (b) of BAT 62 are not applicable, measurement of the HCl concentration in the gaseous phase above the pickling bath is carried out at least once every year.
- (⁷) The monitoring only applies when the substance concerned is identified as relevant in the waste gas stream based on the inventory given in BAT 2.
- (8) The monitoring does not apply if only natural gas is used as a fuel or when only electricity is used.

Pickling with hydrochloric acid	HR, CR, HDC, WD		Once every year	BAT 24	_
Pickling and stripping with hydrochloric acid	BG	EN 1911 (³)	Once every year	BAT 62	– Footnote 5 – not applicable ⊗
Hydrochloric acid recovery by spray roasting or by using fluidised bed reactors	HR, CR, HDC, WD		Once every year	BAT 29	_
Pickling and stripping with hydrochloric acid in open pickling baths	BG	No EN standard available	Once every year <mark>(</mark>	BAT 62	_

HCl

Dust	Feedstock heating	HR, CR, WD, HDC	EN 13284-1 (³) (⁴)	Continuous for any stack with dust mass flows > 2 kg/h Once every 6 months for any stack with dust mass flows between 0,1 kg/h and 2 kg/h Once every year for any stack with dust mass flows < 0,1 kg/h	BAT 20	Ecotroto 5 –
	Hot dipping after fluxing	HDC, <mark>BG</mark>		Once every year (⁵)	BAT 26	reduce to every 3 years if stable

_

IMPORTANT

No BAT-AEL was set for Zn emissions to air – monitoring requirement was added because EC wants data for next BREF revision!

No monitoring or BAT-AEL for ammonia (NH₃) or lead (Pb)

Feedstock heating (²)	HR, CR, WD, HDC	EN 14792 (³)	Continuous for any stack with NO _X mass flows > 15 kg/h Once every 6 months for any stack with NO _X mass flows between 1 kg/h and 15 kg/h Once every year for any stack with NO _X mass flows < 1 kg/h	BAT 22	Footnote 5 – not
Heating of the galvanising kettle (²)	HDC of wires, <mark>BG</mark>		Once every year		applicable 😕
Pickling with nitric acid alone or in combination with other acids	HR, CR		Once every year	BAT 25	
Hydrochloric acid recovery by spray roasting or by using fluidised bed reactors Mixed acid recovery by spray roasting or by evaporation	HR, CR, WD, HDC		Once every year	BAT 29	

 NO_X

-

There are extensive BAT requirements related to management systems

- Environmental Management System
- Inventory of process chemicals used and of waste water and waste gas streams
- Chemicals Management System
- Plan for prevention and control of leaks and spillages
- Risk-based OTNOC management plan

For all the above, requirements are same for large steel producers and small galvanizers, but the BREF states:

"The level and detail of the plan/system will generally be related to the nature, scale and complexity of the plant"

JRC SCIENCE FOR POLICY REPORT

Best Available Techniques (BAT) Reference Document for the Ferrous Metals Processing Industry

> Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)

Aries, E., Gómez, Benavides, J., Mavromatis, S., Klein, G., Chronopoulos, G., Roudier, S.

2022

https://eippcb.jrc.ec.europa.eu/reference/ferrous-metals-processing-industry

Additional Points / Q&A

Additional Issues

- Impact of the IED Revision
 - BAT-AEPLs to be mandatory for permits
 - Evaluation of feasibility to meet lowest level of BAT-AEL range
- Chemical Management Systems effect of the STM BREF
- Electrical heating in BATs for furnace emissions
- Error in BAT 59
- Emissions to Water

BAT 22. In order to prevent or reduce NO_X emissions to air from heating while limiting CO emissions and the emissions of NH₃ from the use of SNCR and/or SCR, BAT is to use either electricity generated from fossil-free energy sources or an appropriate combination of the techniques given below.

Technique		Description	Applicability	
Redı	uction of generation of emissions			
a.	Use of a fuel or a combination of fuels with low NO _x formation potential	Fuels with a low NO _x formation potential, e.g. natural gas, liquefied petroleum gas, blast furnace gas and basic oxygen furnace gas.	Generally applicable.	

BAT 58. In order to prevent the generation of spent acids with high zinc and high iron concentrations or, where that is not practicable, to reduce their quantity sent for disposal, BAT is to carry out pickling separately from stripping.

Description

Pickling and stripping are carried out in separate tanks in order to prevent the generation of spent acids with high zinc and high iron concentrations or to reduce their quantity sent for disposal.

Applicability

Applicability to existing plants may be restricted by a lack of space in the event that additional tanks for stripping are needed.

BAT 59. In order to reduce the quantity of spent stripping solutions with high zinc concentrations sent for disposal, BAT is to recover the spent stripping solutions and/or the ZnCl₂ and NH₄Cl contained therein.

Description

Techniques to recover spent stripping solutions with high zinc concentrations on site or off site include the following:

- Zinc removal by ion exchange. The treated acid can be used in pickling, while the $\rm ZnCl_{2^{-}}$ and $\rm NH_4Cl$ -containing solution resulting from the stripping of the ion-exchange resin can be used for fluxing.
- Zinc removal by solvent extraction. The treated acid can be used in pickling, while the zinc-containing
 concentrate resulting from stripping and evaporation can be used for other purposes.

EC's error! BAT 59 to be ignored.

⊇ EGG/

1.6.1. Residues

BAT 63. It is not BAT to discharge waste water from batch galvanising.

Description

Only liquid residues (e.g. spent pickling acid, spent degreasing solutions and spent fluxing solutions) are generated. These residues are collected. They are appropriately treated for recycling or recovery and/or sent for disposal (see BAT 18 and BAT 59).

BAT-AELs for emissions to water are <u>NOT</u> for batch galvanizing – no data collected for that to set the limits

Chemical Management Systems

L 284/69

COMMISSION IMPLEMENTING DECISION (EU) 2022/2110

of 11 October 2022

establishing the best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions, for the ferrous metals processing

industry

(notified under document C(2022) 7054)

(Text with EEA relevance)

- BAT 3. In order to improve the overall environmental performance, BAT is to elaborate and implement a chemicals management system (CMS) as part of the EMS (see BAT 1) that incorporates all of the following features:
- i. A policy to reduce the consumption and risks of process chemicals, including a procurement policy to select less harmful process chemicals and their suppliers with the aim of minimising the use and risks of hazardous substances and avoiding the procurement of an excess amount of process chemicals. The selection of process chemicals may consider:

Applicability

The level of detail of the CMS will generally be related to the nature, scale and complexity of the plant.

saler alternatives to the use of nazardous substances (e.g. use of other process chemicals with no of lower environmental impacts, see BAT 9).

(d) the anticipatory monitoring of regulatory changes related to hazardous chemicals and safeguarding compliance with applicable legal requirements.

The inventory of process chemicals (see BAT 2) may be used to support the selection of process chemicals.

- ii. Goals and action plans to avoid or reduce the use and risks of hazardous substances.
- iii. Development and implementation of procedures for the procurement, handling, storage, and use of process chemicals to prevent or reduce emissions to the environment (e.g. see BAT 4).

Small plants 15-50 employees

Large plants <u>or</u> international groups of plants > 50 to ~1000 employees

COMPLEXITY

Galvanizing activity only

Additional activities on site or within company

CASE STUDY 1

Large galvanizing plant in Spain (Approx 150 employees)

Case Study 1 - Chemical Management System

(≩EGGA

Internal SDS Database

Transport

C⋛EGGA

NOMBRE DEL PRODUCTO	USO	PUESTO DE TRA BAJO	CLA SIFICACIÓN PRODUCTO CONCENTRADO	OBSERVACIONES	ADR 👻	UN 👻	CLASE 🚽
Acetona	Disolvente de pintura. Limpieza	Mantenimiento	Fácilmente inflamable e Irritante		SI	1090	3 (II)
Ácido bórico 4%	Reactivo para la valoración de cloruro amónico	Técnico Laboratorio	No peligroso		NO	-	
Ácido clorhídrico 1N	Reactivo para la valorización de alcalinidad libre y total (Novaclean L- 60)	Técnico Laboratorio	Carrosivo		SI	1798	8 (II)
Ácido clarhídrico 33%	Materia prima balsas de decapado. En los baños está diluido a una concentración entre el 1 - 12%	Baños	Corrosivo / Irritante	Realizadas mediciones higiénicas anuales.	Sí	1789	8 (II)
Ácido clorhídrico 33%	Materia prima balsas de decapado. En los baños está diluido a una concentración entre el 1 - 12%	Centrífuga	Corrosivo / Irritante	Realizadas mediciones higiénicas anuales.	Sí	1789	8 (II)
Ácido clarhídrico 33%	Materia prima balsas de decapado. En los baños está diluido a una concentración entre el 1 - 12%	Técnico Laboratorio	Corros ivo/Irritante	Realizadas mediciones higiénicas anuales.	Sí	1789	8 (II)
Ácido clarhídrico 33%	Materia prima balsas de decapado. En los baños está diluido a una concentración entre el 1 - 12%	Mantenimiento	Corrosivo / Irritante		sí	1789	8 (II)
Àcido etilendiaminotetracético EDTA 0,1 M	Reactivo para la valoración de cloruro de Zinc.	Técnico Laboratorio	No peligroso		NO	-	-
Ácido nítrico 65%	Valoración de cloruro de Zinc.	Técnico Laboratorio	Corrosivo. Comburente		SI	2031	8 (II E)
Ácido orto-fos fórico 85%	Reactivo para la valorización Cloruro de hierro y valorización de Brugal 4415	Técnico Laboratorio	Carrosivo		SI	1805	8 (III E)
Àcidosulfúrico0,5N	Reactivo para la valoración de cloruro amónico	Técnico Laboratorio	Carrosivo		SI	2796	8 (III E)
Ácido s ultúrico 95-97%	Reactivo para la valorización Cloruro de hierro y valorización de Brugal 4415	Técnico Laboratorio	Carrosivo		SI	1830	8 (II E)
ADD Cleaner 501 DIP	Desengrase alcalino	NO USO	Irritante		NO		-
Additive DEC	Inhibidor baños de decapado. En los baños de decapado está a una concentración del 0,05% aprox.	NO USO	Corrosico. Irritante		NO	-	-
Additive SP	Tens ioactivo desengras e ácido	Carga y Descarga	Corrosivo. Irritante		NO		
Additive SP	Tens ioactivo desengras e ácido	Mantenimiento	Corrosivo. Irritante		NO		-
Additive SP	Tens ioactivo desengras e ácido	Baños	Corrosivo. Irritante		NO		-
Adhesivo Uneplas FT	Pegamento para instalaciones de PVC	Mantenimiento	Fácilmente inflamable, nocivo, Irritable		SI	1133	3 (III)
Agua oxigenada 30%	Depuración baño de flux	Carga y Descarga	Corrosivo / Irritante		SI	2014	5,1 (II)
Agua oxigenada 30%	Depuración baño de flux	Mantenimiento	Corrosivo / Irritante		SI	2014	5,1 (II)
Alambre de zinc	Metalización a pistola.	Mantenimiento	No peligroso		NO		
Alambre de zinc	Metalización a pistola.	Repas o	No peligroso		NO		-

Worker Exposure Assessments (example)

EVALUACION DE CONTAMINANTES DEL PUESTO DE TRABAJO

7.3.1 PUESTO : BAÑOS

			Fe	Fecha evaluación: 04/05/2022			Evaluador: ALS				
1 RESULTADOS											
MUESTRA	FECHA	TRABAJADOR	CONTAMINANTE	TIEMPO DE EXPOSICION (horas)	CONCENTRACIÓN MEDIDA (mg/m*)	ED (mg/m°)	VALOR LÍMITE (mg/m°)	INDICE EXPOSICIÓN	EFECTO ADITIVO		
M-22-3963	11/3/22		Materia particulada inhalable	7.75	< 0,37	0,3584	10	0.0358	NO		
M-22-3963	11/3/22		Metal Fe (fracción inhalable	;) 7.75	0,0157	0,0152	5	0,00304	NO		
M-22-3963	11/3/22		Metal Pb (fracción inhalable	7.75	< 0,0055	0,0053	0,15	0,0355	NO		
M-22-3963	11/3/22	-	Metal Mn (fracción inhalable	7,75	< 0,0055	0,0053	0,2	0,0265	NO		
M-22-3963	11/3/22		Metal Al (fracción inhalable	7,75	< 0,0275	0,0266	10	0,0026	NO		
M-22-3967	11/3/22		Matria particulada resp rable	⁰ⁱ⁻ 7.75	0,18	0,1743	3	0,0581	NO		
M-22-3967	11/3/22		Metal Zn (fracción respirable	e) 7.75	0,0065	0,0062	2	0,0031	NO		
M-22- 1157	17/1/22		Cloruro de hidrógeno	7.75	< 0,06	0,0581	7,6	0,0076	NO		

Empresa:

Case Study 1: Observations

- Primary focus is on worker exposures
- Simple SDS Database integrated to internal management system
- Management actions based on:
 - SDS content
 - ELVs and OSH requirements
- Continuous improvement an ongoing process to reduce risk
- Risk assessment (beyond SDS...)
 - External agency (mandatory "Prevention Service" accredited by national Ministry)
 - Limited internal capacity
- Process chemicals are used in the process but are not incorporated into the 'product' – less focus on communication to customers
- Prioritisation is implicit in the management process

CASE STUDY 2

Prestia – A Group of Galvanizing Plants in France (5 installations; approx. 450 employees (all activities). Some sites operate other activities that may be outside the IED but involve handling of chemicals)

- Level 1 is intended for users with little or no knowledge of chemical risk prevention wishing to conduct an assessment.
- Level 2 is intended for intermediate users wishing to implement risk assessments and prevention at the company.
- Level 3 is intended for experts in chemical risk who can use sophisticated modelling tools, analyse measurement results and objectively interpret the algorithms used by Seirich.

Hand arm vibration international

⊜EGGA

DIARY OF EVENTS

~	SEIRICH
J)	Évaluer le risque chimique

(j)

Veuillez suivre le lien suivant : Version 3.3.0

	Produits étiquetés	Agent	Agents chimiques émis		Substances			
	Tous les établissements	✓ Sélectionner une unité de travail	Ŧ	Sélectionner un poste de travail			Ŧ	
***	Un produit étiqueté est un p	roduit soumis à la réglementation CLP et qui présente un ensemble d	d'informations réglementaires sur la FDS et son étiquette	: pictogramme et mentions de danger en parti	culier.			
Ä	Rechercher un produit / un fournisseur		م			Tous le	es statuts 🔻	
\mathbb{A}	Nom des produits étiquetés	A Nom d'usage		Fournisseur	FDS	Date MàJ FDS	Statut 🕈	
<u> </u>	Acide chlorhydrique Kuhlmann	Acide chlorhydrique Kuhlmann	Produits chimiques de loos			23/02/2016		
Ø	Acide chlorhydrique Quadrimex	Acide chlorhydrique Quadrimex	Quadrimex			25/08/2021		
EPI	Alcali 20%	Alcali 20%	Brenntag		E	31/03/2022	•	
\heartsuit	Alu 900	Alu 900	Bardahl			04/02/2021		
<u> </u>	Bactodor	Bactodor	SID			14/10/2020		
\mathbf{r}	Bonderite	Bonderite	Henkel			21/02/2019		
	Brugal galvapas 320	Brugal galvapas 320	Vera Chimie Developpements			20/01/2020		
	Cap horn	Cap horn	Bardahl			12/05/2022		
-	Chlorure d'ammonium liquide	Chlorure d'ammonium liquide	Vera Chimie Developpements			10/09/2019		
L	Chlorure d'ammonium solide	Chlorure d'ammonium solide	Vera Chimie Developpements			07/10/2019		
\mathcal{H}	Concentré de shampoing carrosserie	Concentré de shampoing carrosserie	FORCH			03/06/2022		
	Dégraissant atelier	Dégraissant atelier	Bardahl			23/11/2021		
	Gérer les champs personnalisés des produits (i)			Ajo	uter à la liste l	es produits non asso	ciés à une zone	

Θ

Note: Many substances are beyond the IED FMP installation activity

Ajouter un produit étiqueté

😴 GCX.ser - SEIRICH

Tous les établissements

JRC SCIENCE FOR POLICY REPORT

Best Available Techniques (BAT) Reference Document for the Ferrous Metals Processing Industry

> Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)

Aries, E., Gómez, Benavides, J., Mavromatis, S., Klein, G., Chronopoulos, G., Roudier, S.

2022

https://eippcb.jrc.ec.europa.eu/reference/ferrous-metals-processing-industry

