VOW

LEADING Technology for the HOT-DIP Galvanizing Industry

ElectricallyHeated
Furnaces and
their potential
for Sustainablity

Nordic Galvanizers
Annual Member Meeting 2023, Helsinki

Key information – Our background

Name: Nils Erik Faulhaber

Work: Mechanical Engineer and Project Manager for CHE

CHE is based in Norway, Fredrikstad

Founded in 1937

- Over **85 years of experience** with innovative solutions in Heat Treatment Industry
- Over **60 years of experience** with electric heated HDG applications
- Over **30 years of experience** with gas heated HDG applications
- Over **25 years of experience** with hybrid solutions.

Part of **VOW ASA Group** with operations in Europe and the US. Vow is a world leading provider of technology and solutions that prevent pollution and greenhouse gas emissions (www.vowasa.com).

CHE Installations worldwide

Approx. **250 Hot Dip Galvanizing installations worldwide,** over 4.000 totally for Heat Treatment Solutions in **45 countries**

Global situation

- More and more Hot Dip Galvanizers are focusing on their **energy consumption** both economically, but also related to the source of the energy and sustainability.
 - Subjects of **discussion**:
 - CO₂-foot print
 - Availability
 - Price
 - Future
 - Sustainability
- Possible Solution: Electrically heated Systems

Why electricity?

- Electric energy production is **not depending on a single energy** source.
 - **Different Energy sources** can be transformed like:
 - Gas
 - Waterpower
 - Photovoltaic
 - Geothermal energy
 - Wind energy, etc.
 - With the choice of the energy source the **CO₂-footprint** can be chosen as well.

Sustainable sources are available.

Challenges

- **80%** or more of all galvanizing furnaces worldwide are **not electrically heated** (estimation).
- Infrastructure/ Availability of electricity on site.
- Gas optimized plants **require adjustments** for change of energy source.
- Future perspectives

Long term goal will be carbon-neutral production.

Advantages

- **Even and homogenous heat distribution** on kettle walls (longer life span).
- **Lower nominal energy consumption** (No heat loss through chimney).
- Easy to fit two temperature **regulation zones** (less top dross).
- Less maintenance.
 - Long life span of heating elements
 - Heating elements are easy to repair
 - Less auxiliary equipment.

Limitations

In general, there are **no size limitations** for electrifying the HDG furnace or other HDG equipment.

Requirements:

- **Availability** of enough electricity on site.
- **Stable grid** (can be compensated with safety measures).
 - Energy load **kW/m²** same as for gas fired applications

Standard electric heating methodes for galvanizing:

Electric Resistance heating

 Heating element wire emitting radiant heat

Induction

· Induction coils induce heat

- Complicated and expensive installation on kettle/ furnace
- 5% Energy loss for cooling inductors

CHE Standard electric heating systems:

Immersion heating rods

 Heating rods directly immerged in liquid zinc

 Most efficient heat distribution with direct heat transfer, less zinc

Radiant heat

 Heating elements around steel kettle wall

 Top heated systems (mostly ceramic kettle)

Fully electric heated HDG furnaces:

Electric heated HDG furnace with steel kettle

- Approx. 30% less nominal power required
- Independent of electricity generation min. 30% less CO₂foot print

Electric heated ceramic bath

- Immersion heating rods smaller bath dimensions, more effective heating
- Top fired, less nominal power

Hybrid HDG furnaces (gas/electric):

High velocity burners combined with electric heating element

- Main power supply is gas
- Additional electric heating can improve CO₂-balance drastically

Applicable electric sources

- Direct supply from local electricity supplier
- Surplus of own electricity production from
 - Photovoltaic
 - Wind energy
 - Fuel based emergency generator
 - Etc.

Auxiliary equipment:

Fume enclosure with integrated cover lid

- Simple covering of HDG bath in non-production hours, lunch breaks etc.
- approx. 70% less losses over bath surface

Fully electrically heated HDG dryer

• For fully electric HDG line.

Energy calculation

	rgy calculat SIZE AND CAP	ACITY:	ANNUAL ENER	PCV CONSUMB	
epth iross hourly capasity: inc consumption:	NERGY CONSUMPTION	2,6 5,0 7	O m O m O m O m O m O m O m O m O m O m	8 760 h 5,00 tons/ h 115 h 45 Weeks	TION
leat losses zinc surface: leat losses furnace construction: nergy for production: nergy for zinc melting: necurity:		270 28 345 29 3	innual production hours: nual production nual production nual production	5 175 h 25 875 tons 7 %	
AS HEATING	ELEG	CTRIC HEATING	Energ	gy consumption:	
orific value, gas:	10 kW/Nm³ Enery sides	nlled power: gy loading, s only: gy loading, s and ends:	inergy loss from zinc surface production: inergy loss from zinc surface covered: inergy loss from furnace construction: inergy for production: inergy for zinc melting:	1 399 320 kWh 149 136 kWh 251 587 kWh 1 785 375 kWh 153 956 kWh	2 kW/m²
of burners: gy loading:	11 kW/m ²		otal energy consumption, electric:	3 739 374 kWh	
ZINC CONTENT act. 70mm, Free-Board) 363 Tons		WEIGH	Spesific energy consumption, electric:	145 kWh/ton 5 752 884 kWh	575 288 Nm³

- Calculation of **Energy load** on kettle wall
- Calculation of annual energy consumption based on customer input
- **Clear picture** of required energy and where energy consumption and CO₂-footprint can be minimized!

Programming and control:

Remote control and remote assistance

- Full remote control for customer and service assistance on PC and Pads
- Smart solutions possible

Data logging

 Data logging of desired production parameters and information

Some of our customers

Conclusion

- In order to achieve a carbon-neutral industry, the transition to electric heated systems seems to be a potential solution and feasible.
- Both short-term and long-term measures can be taken.
- The **future will be probably be fully electric**, but in a transition period there will be electric and hybrid solutions.
- CHE delivers gas fired, electric and hybrid solutions.
- Let's make the Hot Dip Galvanizing Industry more sustainable together and get closer to a

Carbon-neutral Industry!

Thank you for your attention!